A University of Georgia researcher has invented a new technology that can inexpensively render medical linens and clothing, face masks, paper towels – and yes, even diapers, intimate apparel and athletic wear, including smelly socks – permanently germ-free.

The simple and inexpensive anti-microbial technology works on natural and synthetic materials. The technology can be applied during the manufacturing process or at home, and it doesn’t come out in the wash. Unlike other anti-microbial technologies, repeated applications are unnecessary to maintain effectiveness.

“The spread of pathogens on textiles and plastics is a growing concern, especially in healthcare facilities and hotels, which are ideal environments for the proliferation and spread of very harmful microorganisms, but also in the home,” said Jason Locklin, the inventor, who is an assistant professor of chemistry in the Franklin College of Arts and Sciences and on the Faculty of Engineering.

The anti-microbial treatment invented by Locklin, which is available for licensing from the University of Georgia Research Foundation, Inc., effectively kills a wide spectrum of bacteria, yeasts and molds that can cause disease, break down fabrics, create stains and produce odors.

“Similar technologies are limited by cost of materials, use of noxious chemicals in the application or loss of effectiveness after a few washings,” said Gennaro Gama, UGARF senior technology manager. “Locklin’s technology uses ingeniously simple, inexpensive and scalable chemistry.”

Gama said the technology is simple to apply in the manufacturing of fibers, fabrics, filters and plastics. It also can bestow antimicrobial properties on finished products, such as athletic wear and shoes, and textiles for the bedroom, bathroom and kitchen.

Locklin said the antimicrobial was tested against many of the pathogens common in healthcare settings, including staph, strep, E. coli, pseudomonas and acetinobacter. After just a single application, no bacterial growth was observed on the textile samples added to the culture – even after 24 hours at 37 degrees Celsius.

Thin films of the new technology also can be used to change other surface properties of both cellulos e- and polymer  -based materials. “It can change a material’s optical properties – color, reflectance, absorbance and iridescence – and make it repel liquids, all without changing other properties of the material,” said Gama.

LEAVE A REPLY

Please enter your comment!
Please enter your name here