EPFL scientists have mapped out the steps required to build a self-sustaining research base on Mars that would be habitable for the long term. Their work can help researchers set priorities for space programs exploring Mars as well as the solar system as a whole.

The research base would consist of three modules: a central core, capsules and a dome. The central core would be 12.5 meters high and five meters in diameter, and would house the minimal living space as well as everything the crew needed to live. The three capsules would be built around the minimal living space and serve as airlocks between that space and the exterior.

Robots would set up these structures during the first phase of the mission. The dome would cover the entire base and would be made of polyethylene fiber covered with a three-meter thick layer of ice – creating a kind of igloo. The dome would also represent an additional living space, provide a second barrier to protect the crew against radiation and micrometeoroids, and help keep the pressure constant inside the base.

Once the robots have scoped out the site and created a safe place for humans, a six-person crew would start their journey to the Red Planet. This would ideally take place during the polar summer, when the crew could soak up 288 straight days of Martian sunlight. They would obviously need to pack lots of essentials to get them through the long summer, like non-perishable food, batteries, and reactors that can turn Mars’ natural elements, like thorium, into power. And after living on the base for about nine months, the crew would make their way back home — marking the first round-trip, crewed-mission to Mars.

“We would need to conduct an initial mission to try everything out for the first time. And the better that initial mission is thought out, the faster we will be able to get things going and move on to colonization,” says Anne-Marlene Rüede, lead author of the study and a student minoring in Space Technology at EPFL’s Space Engineering Center. In reality, the scientists have not taken a stance on the prospect of colonizing Mars. But one of the key benefits of this research is that the systems it envisions could be used for robotic missions in general, whether Martian, lunar, terrestrial or otherwise.

LEAVE A REPLY

Please enter your comment!
Please enter your name here